Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Immunol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589618

RESUMO

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.

2.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , 60419 , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
3.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904989

RESUMO

Background: The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective: We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods: Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results: Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions: Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.

4.
J Immunol ; 211(12): 1806-1813, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870292

RESUMO

Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.


Assuntos
Asma Induzida por Aspirina , Asma , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Interleucina-33 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Ativação Plaquetária , Aspirina/farmacologia , Inflamação , Receptores de Tromboxanos/uso terapêutico
6.
Am J Respir Crit Care Med ; 208(10): 1088-1100, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647574

RESUMO

Rationale: Patients with chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D) have worse clinical outcomes compared with patients without metabolic dysregulation. GLP-1 (glucagon-like peptide 1) receptor agonists (GLP-1RAs) reduce asthma exacerbation risk and improve FVC in patients with COPD. Objectives: To determine whether GLP-1RA use is associated with reduced COPD exacerbation rates, and severe and moderate exacerbation risk, compared with other T2D therapies. Methods: A retrospective, observational, electronic health records-based study was conducted using an active comparator, new-user design of 1,642 patients with COPD in a U.S. health system from 2012 to 2022. The COPD cohort was identified using a previously validated machine learning algorithm that includes a natural language processing tool. Exposures were defined as prescriptions for GLP-1RAs (reference group), DPP-4 (dipeptidyl peptidase 4) inhibitors (DPP-4is), SGLT2 (sodium-glucose cotransporter 2) inhibitors, or sulfonylureas. Measurements and Main Results: Unadjusted COPD exacerbation counts were lower in GLP-1RA users. Adjusted exacerbation rates were significantly higher in DPP-4i (incidence rate ratio, 1.48 [95% confidence interval, 1.08-2.04]; P = 0.02) and sulfonylurea (incidence rate ratio, 2.09 [95% confidence interval, 1.62-2.69]; P < 0.0001) users compared with GLP-1RA users. GLP-1RA use was also associated with significantly reduced risk of severe exacerbations compared with DPP-4i and sulfonylurea use, and of moderate exacerbations compared with sulfonylurea use. After adjustment for clinical covariates, moderate exacerbation risk was also lower in GLP-1RA users compared with DPP-4i users. No statistically significant difference in exacerbation outcomes was seen between GLP-1RA and SGLT2 inhibitor users. Conclusions: Prospective studies of COPD exacerbations in patients with comorbid T2D are warranted. Additional research may elucidate the mechanisms underlying these observed associations with T2D medications.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Doença Pulmonar Obstrutiva Crônica , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Estudos Retrospectivos , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Estudos Prospectivos , Compostos de Sulfonilureia/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
7.
J Allergy Clin Immunol ; 152(3): 700-710.e3, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37068712

RESUMO

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is the triad of asthma, nasal polyposis, and respiratory reactions to COX-1 inhibitors. Overproduction of cysteinyl leukotrienes and underproduction of prostaglandin E2 (PGE2) are hallmarks of AERD. A mouse model predicted a key role for the thromboxane-prostanoid (TP) receptor in AERD. OBJECTIVE: Our aim was to determine whether ifetroban, a TP receptor antagonist, attenuates aspirin-induced respiratory symptoms in patients with AERD. METHODS: A total of 35 patients with AERD completed a 4-week double-blinded, placebo-controlled trial of ifetroban and underwent an oral aspirin challenge. The primary outcome was change in the provocative dose of aspirin that caused a 2-point increase in Total Nasal Symptom Score. Changes in lung function, eicosanoid levels, and platelet and mast cell activation were assessed. Cultured human nasal fibroblasts were stimulated with or without the TP agonist U46619 and assayed for prostanoid production. RESULTS: Ifetroban was well tolerated in AERD and did not change the mean 2-point increase in Total Nasal Symptom Score (P = .763). Participants taking ifetroban had greater aspirin-induced nasal symptoms and a greater decline in FEV1 value than did participants receiving placebo (-18.8% ± 3.6% with ifetroban vs -8.4% ± 2.1% with placebo [P = .017]). Four weeks of ifetroban significantly increased urinary leukotriene E4 levels and decreased nasal PGE2 levels compared with placebo. Peak aspirin-induced urinary thromboxane levels correlated with peak urinary leukotriene E4 and prostaglandin D2 metabolite levels in participants taking ifetroban. U46119 significantly potentiated the production of PGE2 by cultured nasal fibroblasts from subjects with AERD but not by cultured nasal fibroblasts from controls without polypoid sinusitis. CONCLUSION: Contrary to our hypothesis, TP receptor blockade worsened aspirin-induced reactions in AERD, possibly by exacerbating dysregulation of the eicosanoid system. TP signaling on stromal cells may be critical to maintaining PGE2 production when COX-2 function is low.


Assuntos
Asma Induzida por Aspirina , Sinusite , Animais , Camundongos , Humanos , Prostaglandinas , Tromboxanos/uso terapêutico , Leucotrieno E4 , Receptores de Tromboxanos/uso terapêutico , Asma Induzida por Aspirina/tratamento farmacológico , Asma Induzida por Aspirina/diagnóstico , Aspirina/efeitos adversos , Eicosanoides , Dinoprostona , Homeostase , Sinusite/induzido quimicamente
8.
J Allergy Clin Immunol ; 151(6): 1536-1549, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804595

RESUMO

BACKGROUND: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE: We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS: Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS: Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS: These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Animais , Camundongos , Receptor de Insulina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Inflamação/metabolismo , Sinusite/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Doença Crônica , Pólipos Nasais/metabolismo , Rinite/metabolismo
10.
J Allergy Clin Immunol ; 151(2): 301-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184313

RESUMO

Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.


Assuntos
Asma Induzida por Aspirina , Animais , Ciclo-Oxigenase 1 , Aspirina/efeitos adversos , Leucotrienos , Inflamação
11.
J Allergy Clin Immunol ; 151(3): 806, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529561
12.
J Allergy Clin Immunol Pract ; 11(2): 492-499.e2, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356925

RESUMO

BACKGROUND: Mas-related G protein-couple receptor x2 (Mrgprx2) activation underlies many common non-IgE-mediated adverse drug reactions (ADRs), yet the features of patients with reactions to Mrgprx2-activating drugs are unknown. OBJECTIVE: To characterize the patient-specific comorbidities and laboratory characteristics associated with listed reactions to Mrgprx2-activating drugs, including fluoroquinolones, morphine, neuromuscular blockade agents, vancomycin, and leuprolide. METHODS: We used a retrospective, observational cohort study design using electronic health record data from adults with an Mrgprx2-activating drug exposure recorded within a hospital system clinical Biobank. Odds ratios (ORs) and incidence rate ratios for clinical characteristics associated with ADRs, including immediate hypersensitivity reactions, were calculated using multivariable logistic regression. RESULTS: Among 59,763 patients exposed to Mrgprx2-activating drugs, 4846 had a listed ADR. Female sex, White race, asthma (OR: 1.81, 95% confidence interval [CI]: 1.68-1.94), chronic urticaria (OR: 1.73, 95% CI: 1.46-2.05), and mastocytosis (OR: 12.79, 95% CI: 5.98-27.02) were associated with increased odds of a reaction. Overall, patients with allergic disease had 1.21 times the rate of an ADR compared with patients without allergic disease. Elevated absolute eosinophil count was inversely associated with reactions, and there was no association with elevated total IgE. Observed associations were similar in a patient subgroup with immediate-type hypersensitivity reactions. CONCLUSION: Specific allergic diseases and common allergic biomarkers are differentially associated with ADRs to Mrgprx2-activating drugs. These findings from a large, "real world" drug-exposed population highlight clinical factors that may contribute to non-IgE-mediated drug allergy.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hipersensibilidade Imediata , Hipersensibilidade , Humanos , Feminino , Registros Eletrônicos de Saúde , Bancos de Espécimes Biológicos , Estudos Retrospectivos , Mastócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Proteínas de Ligação ao GTP , Degranulação Celular , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo
13.
Trans Am Clin Climatol Assoc ; 132: 92-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196164

RESUMO

Type 2 inflammation (T2I) underlies the pathogenesis of asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. Mast cells (MCs) are tissue resident hematopoietic effector cells thought to play major roles in T2I. Two subtypes of human MCs are recognized based on immunohistochemical differences. MCs expressing tryptase but not chymase (MCT) reside within mucosal epithelial surfaces, and MCs expressing tryptase, chymase, and cathepsin G (MCTC) reside in submucosal, perivascular and intraneural locations. During T2I, MCs (particularly MCT) increase markedly by unclear mechanisms. Single cell genomic studies reveal that traditional histochemical categorization vastly underestimates the extent of MC functional heterogeneity. MCT and MCTC likely reflect endpoints of a developmental continuum, emerging from a transitional stage of development in which MCs expand through in situ proliferation. This mechanism, likely driven by interleukin 4 and other cytokines, is unique among granulocytes and carries substantial implications for pathogenesis and therapy of T2I-associated diseases.


Assuntos
Interleucina-4 , Mastócitos , Catepsina G/metabolismo , Humanos , Inflamação , Interleucina-4/metabolismo , Triptases/metabolismo
14.
J Allergy Clin Immunol ; 150(4): 739-747, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36205448

RESUMO

Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.


Assuntos
Hipersensibilidade , Transcriptoma , Diferenciação Celular , Humanos , Hipersensibilidade/metabolismo , Mastócitos/metabolismo , Peptídeo Hidrolases/metabolismo , Células-Tronco
15.
J Immunol ; 209(12): 2293-2303, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36307120

RESUMO

Innate immune responses to innocuous Ags can either prevent or facilitate adaptive type 2 allergic inflammation, but the mechanisms are incompletely understood. We now demonstrate that macrophage UDP-specific type 6 purinergic (P2Y6) receptors selectively activate NFATC2, a member of the NFAT family, to drive an innate IL-12/IFN-γ axis that prevents type 2 allergic inflammation. UDP priming potentiated IL-12p40 production in bone marrow-derived macrophages (BMMs) stimulated by the house dust mite Dermatophagoides farinae (Df) in a P2Y6-dependent manner. Inhibitions of phospholipase C, calcium increase, and calcineurin eliminated UDP-potentiated Df-induced IL-12p40 production. UDP specifically induced nuclear translocation of NFATC2, but not NFATC1 and NFATC3, in BMMs in a P2Y6-dependent manner. UDP-potentiated IL-12p40 production by BMMs and Df-induced IL-12p40 gene expression by alveolar macrophages were abrogated in cells from Nfatc2 knockout mice. Pulmonary transplantation of wild-type but not Nfatc2 knockout macrophages increased Df-induced IL-12 production and IFN-γ expression in P2ry6 fl/fl/Cre/+ recipient mice. Finally, Nfatc2 knockout mice showed significantly increased indices of type 2 immunopathology in response to Df challenge, similar to P2ry6 fl/fl/Cre/+ mice. Thus, macrophage P2Y6 receptor signaling selectively utilizes NFATC2 to potentiate an innate IL-12/IFN-γ axis, a potential mechanism that protects against inappropriate type 2 immune responses.


Assuntos
Alveolite Alérgica Extrínseca , Fatores de Transcrição NFATC , Receptores Purinérgicos P2 , Animais , Camundongos , Alveolite Alérgica Extrínseca/metabolismo , Inflamação/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Macrófagos , Camundongos Knockout , Difosfato de Uridina/metabolismo , Receptores Purinérgicos P2/metabolismo , Fatores de Transcrição NFATC/metabolismo
16.
Eur J Pharmacol ; 934: 175257, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36116518

RESUMO

BACKGROUND: Cysteinyl-maresins, also known as maresin-conjugates in tissue regeneration (MCTRs), are recently discovered lipid mediators proposed to reduce airway inflammation. OBJECTIVE: To investigate the influence of MCTRs on IL-13-induced airway hyperresponsiveness in isolated human and mice airways. METHODS: Before responsiveness to contractile agonists were assessed in myographs, human small bronchi were cultured for 2 days and mouse tracheas were cultured for 1-4 days. During the culture procedure airways were exposed to interleukin (IL)-13 in the presence or absence of MCTRs. Signalling mechanisms were explored using pharmacologic agonists and antagonists, and genetically modified mice. RESULTS: IL-13 treatment increased contractions to histamine, carbachol and leukotriene D4 (LTD4) in human small bronchi, and to 5-hydroxytryptamine (5-HT) in mouse trachea. In both preparations, co-incubation of the explanted tissues with MCTR3 reduced the IL-13 induced enhancement of contractions. In mouse trachea, this inhibitory effect of MCTR3 was blocked by three different CysLT1 receptor antagonists (montelukast, zafirlukast and pobilukast) during IL-13 exposure. Likewise, MCTR3 failed to reduce the IL-13-induced 5-HT responsiveness in mice deficient of the CysLT1 receptor. However, co-incubation with the classical CysLT1 receptor agonist LTD4 did not alter the IL-13-induced 5-HT hyperreactivity. CONCLUSIONS: MCTR3, but not LTD4, decreased the IL-13-induced airway hyperresponsiveness by activation of the CysLT1 receptor. The distinct actions of the two lipid mediators on the CysLT1 receptor suggest an alternative signalling pathway appearing under inflammatory conditions, where this new action of MCTR3 implicates potential to inhibit airway hyperresponsiveness in asthma.


Assuntos
Interleucina-13 , Leucotrieno D4 , Humanos , Camundongos , Animais , Leucotrieno D4/farmacologia , Leucotrieno D4/fisiologia , Interleucina-13/farmacologia , Serotonina , Carbacol/farmacologia , Histamina , Receptores de Leucotrienos/metabolismo , Antagonistas de Leucotrienos
17.
J Allergy Clin Immunol ; 149(6): 1919-1925, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35427642

RESUMO

Mast cells (MCs) contribute prominently to all allergic diseases, yet are still poorly understood owing to their exclusive residence in tissues. Recently, the use of RNA-sequencing, proteomics, and other technological advances have accelerated the acquisition of new knowledge. This includes an expanded definition of MC heterogeneity and developmental origins, previously unrecognized functions for MCs, discoveries of genetic causes of MC-related disorders, the introduction of new therapies for clonal MC disease, and the identification of new potential target for treatments. This issue of Advances addresses key studies from 2020 to 2021.


Assuntos
Hipersensibilidade , Mastocitose , Células Cultivadas , Humanos , Hipersensibilidade/genética , Mastócitos , Mastocitose/genética , Mastocitose/terapia
18.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981786

RESUMO

IL-4- and IL-13-driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2-high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.


Assuntos
Araquidonato 15-Lipoxigenase , Asma , Araquidonato 15-Lipoxigenase/genética , Ácido Araquidônico , Asma/tratamento farmacológico , Células Epiteliais , Humanos , Lipoxigenase
19.
J Allergy Clin Immunol ; 150(1): 170-177.e6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026207

RESUMO

BACKGROUND: Patients with aspirin-exacerbated respiratory disease can experience severe reactions during aspirin challenge that are associated with high levels of mast cell mediators. The tissue source and clinical factors contributing to systemic mediator levels are unknown. OBJECTIVE: We sought to determine the concordance between respiratory tract and systemic inflammatory mediator levels and identify clinical factors associated with these mediators. METHODS: We performed an oral aspirin challenge in 30 subjects with aspirin-exacerbated respiratory disease. Respiratory symptoms and function, nasal mucosal fluid, blood, and urine were collected at baseline, at the onset of a respiratory reaction, and over a 3-hour observation period. Changes in nasal and systemic mediator levels were compared. RESULTS: Neither tryptase nor leukotriene E4 levels in nasal fluid correlated with serum tryptase or urinary leukotriene E4 levels at baseline or during reactions. We observed no association between the baseline or aspirin-induced change in nasal versus urinary leukotriene E4 and serum tryptase levels. Body mass index inversely correlated with baseline and aspirin-induced urinary leukotriene E4, prostaglandin D2 metabolite, and serum tryptase levels, as well as with aspirin-induced symptoms and respiratory function, but not with nasal mediators. CONCLUSIONS: The levels of nasal and systemic aspirin-induced mast cell products are discordant in aspirin-exacerbated respiratory disease. Systemically detected levels are likely derived from mast cells outside of the sinonasal cavity and do not accurately reflect upper respiratory tract production. Increased body mass index decreases systemic mast cell mediator production and reaction severity, supporting a contribution of metabolic regulation in aspirin-induced systemic reactions.


Assuntos
Asma Induzida por Aspirina , Sinusite , Aspirina/efeitos adversos , Asma Induzida por Aspirina/urina , Índice de Massa Corporal , Humanos , Leucotrieno E4/urina , Sistema Respiratório , Triptases
20.
Sci Immunol ; 6(66): eabj0474, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932383

RESUMO

Aeroallergen sensing by airway epithelial cells triggers pathogenic immune responses leading to type 2 inflammation, the hallmark of chronic airway diseases such as asthma. Tuft cells are rare epithelial cells and the dominant source of interleukin-25 (IL-25), an epithelial cytokine, and cysteinyl leukotrienes (CysLTs), lipid mediators of vascular permeability and chemotaxis. How these two mediators derived from the same cell might cooperatively promote type 2 inflammation in the airways has not been clarified. Here, we showed that inhalation of the parent leukotriene C4 (LTC4) in combination with a subthreshold dose of IL-25 led to activation of two innate immune cells: inflammatory type 2 innate lymphoid cell (ILC2) for proliferation and cytokine production, and dendritic cells (DCs). This cooperative effect led to a much greater recruitment of eosinophils and CD4+ T cell expansion indicative of synergy. Whereas lung eosinophilia was dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells required signaling through CysLT1R and partially CysLT2R. Tuft cell­specific deletion of Ltc4s, the terminal enzyme required for CysLT production, reduced lung inflammation and the systemic immune response after inhalation of the mold aeroallergen Alternaria; this effect was further enhanced by concomitant blockade of IL-25. Our findings identified a potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


Assuntos
Cisteína/imunologia , Células Epiteliais/imunologia , Interleucinas/imunologia , Leucotrienos/imunologia , Pneumonia/imunologia , Animais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...